Problem:
g(0(),f(x,x)) -> x
g(x,s(y)) -> g(f(x,y),0())
g(s(x),y) -> g(f(x,y),0())
g(f(x,y),0()) -> f(g(x,0()),g(y,0()))
Proof:
Complexity Transformation Processor:
strict:
g(0(),f(x,x)) -> x
g(x,s(y)) -> g(f(x,y),0())
g(s(x),y) -> g(f(x,y),0())
g(f(x,y),0()) -> f(g(x,0()),g(y,0()))
weak:
Matrix Interpretation Processor:
dimension: 1
max_matrix:
1
interpretation:
[s](x0) = x0,
[g](x0, x1) = x0 + x1,
[f](x0, x1) = x0 + x1 + 225,
[0] = 40
orientation:
g(0(),f(x,x)) = 2x + 265 >= x = x
g(x,s(y)) = x + y >= x + y + 265 = g(f(x,y),0())
g(s(x),y) = x + y >= x + y + 265 = g(f(x,y),0())
g(f(x,y),0()) = x + y + 265 >= x + y + 305 = f(g(x,0()),g(y,0()))
problem:
strict:
g(x,s(y)) -> g(f(x,y),0())
g(s(x),y) -> g(f(x,y),0())
g(f(x,y),0()) -> f(g(x,0()),g(y,0()))
weak:
g(0(),f(x,x)) -> x
Matrix Interpretation Processor:
dimension: 1
max_matrix:
1
interpretation:
[s](x0) = x0 + 2,
[g](x0, x1) = x0 + x1,
[f](x0, x1) = x0 + x1,
[0] = 0
orientation:
g(x,s(y)) = x + y + 2 >= x + y = g(f(x,y),0())
g(s(x),y) = x + y + 2 >= x + y = g(f(x,y),0())
g(f(x,y),0()) = x + y >= x + y = f(g(x,0()),g(y,0()))
g(0(),f(x,x)) = 2x >= x = x
problem:
strict:
g(f(x,y),0()) -> f(g(x,0()),g(y,0()))
weak:
g(x,s(y)) -> g(f(x,y),0())
g(s(x),y) -> g(f(x,y),0())
g(0(),f(x,x)) -> x
Matrix Interpretation Processor:
dimension: 2
max_matrix:
[1 3]
[0 1]
interpretation:
[1 3] [6]
[s](x0) = [0 1]x0 + [4],
[1 1] [1 1] [2]
[g](x0, x1) = [0 1]x0 + [0 1]x1 + [0],
[3]
[f](x0, x1) = x0 + x1 + [4],
[1]
[0] = [0]
orientation:
[1 1] [1 1] [10] [1 1] [1 1] [9]
g(f(x,y),0()) = [0 1]x + [0 1]y + [4 ] >= [0 1]x + [0 1]y + [4] = f(g(x,0()),g(y,0()))
[1 1] [1 4] [12] [1 1] [1 1] [10]
g(x,s(y)) = [0 1]x + [0 1]y + [4 ] >= [0 1]x + [0 1]y + [4 ] = g(f(x,y),0())
[1 4] [1 1] [12] [1 1] [1 1] [10]
g(s(x),y) = [0 1]x + [0 1]y + [4 ] >= [0 1]x + [0 1]y + [4 ] = g(f(x,y),0())
[2 2] [10]
g(0(),f(x,x)) = [0 2]x + [4 ] >= x = x
problem:
strict:
weak:
g(f(x,y),0()) -> f(g(x,0()),g(y,0()))
g(x,s(y)) -> g(f(x,y),0())
g(s(x),y) -> g(f(x,y),0())
g(0(),f(x,x)) -> x
Qed