Problem: g(0(),f(x,x)) -> x g(x,s(y)) -> g(f(x,y),0()) g(s(x),y) -> g(f(x,y),0()) g(f(x,y),0()) -> f(g(x,0()),g(y,0())) Proof: Complexity Transformation Processor: strict: g(0(),f(x,x)) -> x g(x,s(y)) -> g(f(x,y),0()) g(s(x),y) -> g(f(x,y),0()) g(f(x,y),0()) -> f(g(x,0()),g(y,0())) weak: Matrix Interpretation Processor: dimension: 1 max_matrix: 1 interpretation: [s](x0) = x0, [g](x0, x1) = x0 + x1, [f](x0, x1) = x0 + x1 + 225, [0] = 40 orientation: g(0(),f(x,x)) = 2x + 265 >= x = x g(x,s(y)) = x + y >= x + y + 265 = g(f(x,y),0()) g(s(x),y) = x + y >= x + y + 265 = g(f(x,y),0()) g(f(x,y),0()) = x + y + 265 >= x + y + 305 = f(g(x,0()),g(y,0())) problem: strict: g(x,s(y)) -> g(f(x,y),0()) g(s(x),y) -> g(f(x,y),0()) g(f(x,y),0()) -> f(g(x,0()),g(y,0())) weak: g(0(),f(x,x)) -> x Matrix Interpretation Processor: dimension: 1 max_matrix: 1 interpretation: [s](x0) = x0 + 2, [g](x0, x1) = x0 + x1, [f](x0, x1) = x0 + x1, [0] = 0 orientation: g(x,s(y)) = x + y + 2 >= x + y = g(f(x,y),0()) g(s(x),y) = x + y + 2 >= x + y = g(f(x,y),0()) g(f(x,y),0()) = x + y >= x + y = f(g(x,0()),g(y,0())) g(0(),f(x,x)) = 2x >= x = x problem: strict: g(f(x,y),0()) -> f(g(x,0()),g(y,0())) weak: g(x,s(y)) -> g(f(x,y),0()) g(s(x),y) -> g(f(x,y),0()) g(0(),f(x,x)) -> x Matrix Interpretation Processor: dimension: 2 max_matrix: [1 3] [0 1] interpretation: [1 3] [6] [s](x0) = [0 1]x0 + [4], [1 1] [1 1] [2] [g](x0, x1) = [0 1]x0 + [0 1]x1 + [0], [3] [f](x0, x1) = x0 + x1 + [4], [1] [0] = [0] orientation: [1 1] [1 1] [10] [1 1] [1 1] [9] g(f(x,y),0()) = [0 1]x + [0 1]y + [4 ] >= [0 1]x + [0 1]y + [4] = f(g(x,0()),g(y,0())) [1 1] [1 4] [12] [1 1] [1 1] [10] g(x,s(y)) = [0 1]x + [0 1]y + [4 ] >= [0 1]x + [0 1]y + [4 ] = g(f(x,y),0()) [1 4] [1 1] [12] [1 1] [1 1] [10] g(s(x),y) = [0 1]x + [0 1]y + [4 ] >= [0 1]x + [0 1]y + [4 ] = g(f(x,y),0()) [2 2] [10] g(0(),f(x,x)) = [0 2]x + [4 ] >= x = x problem: strict: weak: g(f(x,y),0()) -> f(g(x,0()),g(y,0())) g(x,s(y)) -> g(f(x,y),0()) g(s(x),y) -> g(f(x,y),0()) g(0(),f(x,x)) -> x Qed